If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 1x2 + 3x + -22 = 0 Reorder the terms: -22 + 3x + 1x2 = 0 Solving -22 + 3x + 1x2 = 0 Solving for variable 'x'. Begin completing the square. Move the constant term to the right: Add '22' to each side of the equation. -22 + 3x + 22 + x2 = 0 + 22 Reorder the terms: -22 + 22 + 3x + x2 = 0 + 22 Combine like terms: -22 + 22 = 0 0 + 3x + x2 = 0 + 22 3x + x2 = 0 + 22 Combine like terms: 0 + 22 = 22 3x + x2 = 22 The x term is 3x. Take half its coefficient (1.5). Square it (2.25) and add it to both sides. Add '2.25' to each side of the equation. 3x + 2.25 + x2 = 22 + 2.25 Reorder the terms: 2.25 + 3x + x2 = 22 + 2.25 Combine like terms: 22 + 2.25 = 24.25 2.25 + 3x + x2 = 24.25 Factor a perfect square on the left side: (x + 1.5)(x + 1.5) = 24.25 Calculate the square root of the right side: 4.924428901 Break this problem into two subproblems by setting (x + 1.5) equal to 4.924428901 and -4.924428901.Subproblem 1
x + 1.5 = 4.924428901 Simplifying x + 1.5 = 4.924428901 Reorder the terms: 1.5 + x = 4.924428901 Solving 1.5 + x = 4.924428901 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.5' to each side of the equation. 1.5 + -1.5 + x = 4.924428901 + -1.5 Combine like terms: 1.5 + -1.5 = 0.0 0.0 + x = 4.924428901 + -1.5 x = 4.924428901 + -1.5 Combine like terms: 4.924428901 + -1.5 = 3.424428901 x = 3.424428901 Simplifying x = 3.424428901Subproblem 2
x + 1.5 = -4.924428901 Simplifying x + 1.5 = -4.924428901 Reorder the terms: 1.5 + x = -4.924428901 Solving 1.5 + x = -4.924428901 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.5' to each side of the equation. 1.5 + -1.5 + x = -4.924428901 + -1.5 Combine like terms: 1.5 + -1.5 = 0.0 0.0 + x = -4.924428901 + -1.5 x = -4.924428901 + -1.5 Combine like terms: -4.924428901 + -1.5 = -6.424428901 x = -6.424428901 Simplifying x = -6.424428901Solution
The solution to the problem is based on the solutions from the subproblems. x = {3.424428901, -6.424428901}
| 3x=40+x | | X+2=x+20-4x | | -7x+5(x-2)=-28 | | 5x-2=-u | | 3x+x+50=90 | | 9x-6[6(x+9)-(x-7)]-5=0 | | 9(z+2)-2(z-4)=2(z-1)+4(z-1) | | 7(v+8)+2v=11 | | 5w-5+2(5w+1)=-3(w+5) | | 8k+2=-34 | | 10+0.5x=32 | | -28=-4w+6(w-2) | | 46=-2(23-y)+4(y-4) | | x^2+bx-18=0 | | 2x^3+12x^2+10x=y | | 29=-2(21-m)+3(m-3) | | 8(u+3)+3u=2 | | 5b-6-10b-3= | | y=2x+133.2 | | y=ln(3x-4) | | 30=-2(24-m)+3(m-4) | | 4(2x+4)=10x+14-2x+2 | | 21r^2+240r+300=0 | | 6(2x-7)-3=6(x-3)+9 | | 7(y-6)-5y=-31 | | 21r^2+240r+30021=0 | | 6.44-1.78= | | -5x+3y=-3 | | 3x-14=5(9-4x) | | 6(.56x)=6(-0.5x) | | 7x+3x-4=24 | | -4(2r+8)= |